β€”β€”β€” πŸ’₯ Momentum β€”β€”β€”

β€”β€”β€” ⚑ Momentum β€”β€”β€”

~ πŸ“˜ Definitions ~

~ πŸŒ€ Impulse ~

β€”β€”β€” ♻️ Momentum Conservation β€”β€”β€”

~ πŸ“™ Definition ~

In a closed system (no external forces), total momentum remains constant.
When objects interact (collide or push), total momentum before equals total momentum after:

$$\sum p_{\text{initial}} = \sum p_{\text{final}}$$
$$m_1 v_{1i} + m_2 v_{2i} + \cdots = m_1 v_{1f} + m_2 v_{2f} + \cdots$$

Example: Two ice skaters push off each other on frictionless ice.

~ πŸ’‘ Notes ~

β€”β€”β€” βš”οΈ Elastic vs. Inelastic Collisions β€”β€”β€”

1) Elastic Collisions

Formulas:

$$\text{Momentum before} = \text{Momentum after}$$
$$\text{Kinetic Energy before} = \text{Kinetic Energy after}$$

2) Inelastic Collisions

Formulas:

$$\text{Momentum before} = \text{Momentum after}$$
$$\text{Kinetic Energy before} > \text{Kinetic Energy after}$$

β€”β€”β€” βš–οΈ Center of Mass β€”β€”β€”

~ πŸ“š Definition ~

The point where mass of an object or system is considered concentrated.
It's the weighted average position of all mass.

For particles:

$$\vec{R}_{cm} = \frac{1}{M} \sum_i m_i \vec{r}_i$$

For continuous objects:

$$\vec{R}_{cm} = \frac{1}{M} \int \vec{r} \, dm$$

The center of mass moves as if all external forces act on a single point mass located there.