β€”β€”β€” 🧲 Newton’s Laws β€”β€”β€”


β€”β€”β€” ✊ Forces β€”β€”β€”

~ πŸ“– Definition ~

Force is a vector quantity that represents a push or pull exerted on an object. It causes an object to accelerate, decelerate, remain still, or change direction.


~ βš–οΈ Newton's Laws of Motion ~

1. Inertia (First Law)

2. Second Law of Motion

$$\vec{F}_{\text{net}} = m \vec{a}$$
$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m}$$

3. Third Law of Motion


β€”β€”β€” πŸ›‘ Friction: Static and Kinetic β€”β€”β€”

~ πŸ“š Definition ~

~ ↔️ Direction ~

Both friction forces act opposite to the direction of applied force or motion.

~ πŸ“ Magnitude ~

Static friction adjusts up to a maximum:

$$F_{\text{static}} \leq \mu_s N$$
where \(\mu_s\) is the coefficient of static friction, and \(N\) is the normal force.

Kinetic friction has a constant magnitude once moving:

$$F_{\text{kinetic}} = \mu_k N$$
where \(\mu_k < \mu_s\) typically.

~ πŸ”‘ Key Points ~


β€”β€”β€” πŸ”„ Uniform Circular Motion β€”β€”β€”

~ πŸ”„ Centripetal Force ~

$$F_c = \frac{m v^2}{r}$$

Where:

Explanation

Note

If centripetal force disappears, the object moves in a straight line tangent to the circle at release.

~ πŸŒ€ Centrifugal Force ~


β€”β€”β€” 🌌 Newtonian Gravity (Universal Law of Gravitation) β€”β€”β€”

$$F = G \frac{m_1 m_2}{r^2}$$

Where:


~ ❓ What is G? ~

$$G = 6.674 \times 10^{-11} \text{ NΒ·m}^2/\text{kg}^2$$